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Localized structures in cellular flows 
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Abstract. We consider Ginzburg-Landau-type models for localized structures ob- 
served in the vicinity of subcritical bifurcations to cellular flows, where two metastable 
homogeneous states coexist in an interval range of the control parameter. A localized 
structure consists of a small region in the bifmated state surrounded by the basic 
state. We show how non-variational effects, i.e. the absence of a free energy to mini- 
mize, can explain the stability of these stuctures, contrary to the case of droplets in 
first-order phase transitions. 

1. Introduction 

Localized structures are widely observed in fluid flows. Well known examples are 
the local regions of turbulent motion surrounded by laminar flow, which develop in 
many open-flow experiments (e.g. pipe flow, channel flow, boundary layers) [l]. More 
recently, spatially localized standing surface waves have been observed on a horizon- 
tal layer of fluid submitted to  vertical vibrations [2], and convection in binary fluid 
mixtures displayed localized travelling waves [3-61. In all cases the possible origin 
of localized structures lies in the existence of a subcritical instability, which implies 
that  two different homogeneous stable states coexist in an interval range of the con- 
trol parameter. The simplest spatial non-uniformity consists of an interface between 
the two stable states. A similar situation occurs in first-order phase transitions, for 
instance when droplets of liquid nucleate in a supersaturated vapour. In phase transi- 
tions the droplets are always unstable; they either shrink or expand. In the instability 
problem, a ‘droplet’ consists of a region where the system is in the bifurcated state, 
surrounded by the basic state. A puzzling feature of localized structures in fluid flows 
consists of their stability on a finite interval range of the control parameter. We 
have proposed that non-variational effects, i.e. due to  the non-existence of a ‘free en- 
ergy’ to  minimize (a Lyapunov functional), can stabilize the droplet-like structure [7]. 
We describe this mechanism in section 3 after a short presentation of the Ginzburg- 
Landau-type model (section 2). 

2. Ginzburg-Landau-type amplitude equations 

We consider a wave instability of a basic laminar state in a spatially homogeneous 
autonomous system; the order parameter of the bifurcated wavy regime is the com- 
plex amplitude A ( z , t )  of the wavepacket of the form, A(z,t)exp[i(wot - kOz)] + 
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z(x,t)exp[-i(wot - kox)]. At the instability onset, the real part of the growth rate 
of A vanishes; thus it is assumed that the long-wavelength dynamics can be described 
asymptotically by expanding dA/& in Taylor series of A ,  aA/dx,  d2A/dx2 , .  . .. As 
for the free energy in the vicinity of a phase transition, the form of this amplitude 
equation is determined by symmetry constraints, translational invariance in time and 
space, which implies that  the amplitude equation should be invariant under rota- 
tions in the complex plane, A --+ Aexp(i0). Thus, the amplitude equation is of the 
Ginzburg-Landau type 

dA dA d2A 
- = /I A - c - + (Y - + IAI2A P(IA1’). a t  d X  6x2 

The Fourier transform of the linear part of (1) corresponds to  the complex growth rate, 
~ ( k )  = a(k) + i (w(k)  - w o ) ,  where ~ ( k )  = p - a,(E - ko)2  + . . . is the growth rate 
and w ( k )  = wo + c ( k  - k o )  - ai(k - k J 2  + . . . is the dispersion relation. We assume 
a,. > 0, thus small perturbations with a wavenumber Lo are amplified first when 
p > 0.  As the distance from criticality p increases, there exists a band of linearly 
unstable wavenumbers of order&. c is the group velocity and a non-zero value of 
ai corresponds to  dispersion. P is a polynomial in (AI2; the sign of the real part p,. 
of its constant term p determines the super or subcritical nature of the instability, 
i.e. the order of the transition. When p,. > 0,  small perturbations are not stabilized 
by the leading-order non-linearity, and the bifurcation is subcritical. This is the case 
of the experimental situations quoted above, and an equation analogous to  (1) was 
derived long ago for the amplitude of two-dimensional Tollmien-Schlichting waves in 
the plane Poiseuille flow [8]. The imaginary part pi describes an amlitude-dependent 
frequency of the wave, as usual for a non-linear oscillator. 

The simplest way to  prevent the instability blow-up in the subcritical case, is to 
consider a quintic non-linearity with a coefficient y the real part of which is 7,. < 0. 
Thus,  in the reference frame moving at  the group velocity, the Ginzburg-Landau 
model is 

dA d2A - = p A + a  622 + P IAI2A + y IAI4A. 
a t  

Two limit cases are of interest, the conservative one and the variational one. In the 
dissipationless limit, the system is conservative and has time reversal symmetry, thus 
(2) should be invariant under t + -t,  2 ---f -2, A --+ 2. Therefore the coefficients 
should be all pure imaginary, and one gets a modified non-linear Shrodinger equation. 
This equation has stable pulse-like [9] and unstable hole-like [lo] soliton solutions. 
However, these solutions cannot explain the localized structures observed experimen- 
tally in dissipative systems far from equilibrium. The other limit is the variational one, 
obtained if the wave frequency does not depend on its amplitude. This is obviously 
true in particular for a stationary instability, w = 0. The space reflection symmetry 
implies that  (2) should be invariant under, x --+ -x, A + 2. Thus, the coefficients 
of (2) should be all real, and (2) has a Lyapunov functional, L{A}: 

where 
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with 

L decreases in time and is minimum for uniform solutions that  maximize V(IA1). 
There exists a particular value p p  = 3p;/16rr of the control parameter p ,  for which 
the A = 0 and A # 0 uniform solutions have the same ‘energy’ -V. For p = p P ,  
an isolated interface between the two uniform states remains a t  rest; this corresponds 
to  the Maxwell plateau in first order phase transitions [lilt. Pulse-like solutions are 
always unstable; they either shrink or expand in such a way that the lowest ‘energy’ 
state increases in size. The ‘variational pulse’ is even unstable for p = pp because of 
the interaction between its limiting interfaces. Therefore, the stability of pulse-like 
solutions can be explained only with a non-variational effect. 

3. Stable pulse generated by a subcritical oscillatory instability 

We have numerically integrated equation (2) with a pseudo-spectral method involving 
512 complex modes and periodic boundary conditions on the interval [O,L]. For a 
variety of initial conditions and large interval range of the coefficients, a ,  p, we have 
observed stable pulse-like solutions as shown in figure 1 [7]. The pulses exist for values 
of ,u within a finite band. It is important to  note that their size does not depend on 
the box length. Notice that the amplitude of the pulse is strongly localized while its 
phase varies almost linearly in space. 

Amplitude profile Phase urofile 

X X 

Figure 1. I D  pulse-like solution in the case cy, = 0. Other parameters are p = -0.1, 
cyp = 1, 0 = 3 + i ,  y = -2.75 + i ,  interval length: L = 30. (U) Amplitude profile 
/ A ( . ) / .  ( b )  Phase profile O(z) = argA(2). 

Let us consider for simplicity equation (2) with ai = 0 that  corresponds t o  figure 1, 
and try t o  understand the stability mechanism. The pulse-like solutions are of the form 
A ( z ,  t )  = R,(z) exp{i[Rt + Oo(z)]}, In the outer region the pulse amplitude is very 
small and we can neglect non-linear terms. It is then easy to  show that Ro(z)  decays 
exponentially, and that  the phase gradient modulus is a constant determined by SZ. 
The travelling waves frequency correction, S Z ,  depends on the pulse shape R,(z) [7]. 
Writing the equations for R(z , t )  and r$ (z , t ) ,  where A(z , t )  = R(z)exp(ir$(z)), (a = 1) 

t This argument is well known in phase transition theory. 
instabilities. 

It was also applied for subcritical 
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84 
at 

R- = Pi R3 + yi R5 + 2 

we notice tha t  a linear variation in space of the phase 4 simply renormalizes p in 
the  equation for R. As said above, we have for pulse-like solutions 4 = R t + Oo(z), 
where (aO,/az)’ is constant in the outer region and vanishes in the pulse core. We 
define peff = p - (&I,/az)’. The effect of the phase gradient is thus to decrease peff 
in the  outer region, maintaining it below the Maxwell plateau corresponding to  the 
variational problem (6a) with (a+/az)’ constant. On the contrary, the pulse core peR 
is above the Maxwell plateau if p is large enough. The  pulse gets stable by changing 
its shape R,(z),  until its effect on R generates the correct value of the phase gradient 
and thus of peE. This mechanism operates on a finite range of p in the bistability 
region. I t  also works for two-dimensional fields A(z,  y, t )  [7]. 

These pulses can be obtained perturbatively in the conservative and variational 
limits [12-161. In the conservative limit, the effect of the slightly dissipative terms is 
to select the pulse size among a family of scale invariant solitons. One can also obtain 
dissipative analogues of the ‘hole solitons’ of [lo]. 

Let us note finally tha t  in many situations one must consider both the right- and 
left-travelling waves, A-  exp[i(wt - kz)] and A+ exp[i(wt + kz)] generated at the Hopf 
bifurcation. The  coupled amplitude equations for A- and A+ have localized solutions, 
in particular the localized standing waves generated by a parametric excitation [2]. 
One can also study the dynamics during the collision of counter-propagating pulses 
[17, 181. 
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